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Abstract. We propose a new generative model, and a new image simi-
larity kernel based on a linked hierarchy of probabilistic segmentations.
The model is used to efficiently segment multiple images into a consistent
set of image regions. The segmentations are provided at several levels of
granularity and links among them are automatically provided. Model
training and inference in it is faster than most local feature extraction
algorithms, and yet the provided image segmentation, and the segment
matching among images provide a rich backdrop for image recognition,
segmentation and registration tasks.

1 Introduction

It is well understood that image registration, segmentation and recognition are
related tasks [17, 23, 18, 3], and yet, the engineering paradigm suggests the de-
composition of the general vision problem into components, first to be considered
(and even applied) in isolation, and then, sometimes, combined as modules.

In some cases, the modular approach is highly successful. For example, algo-
rithms for registration of multiple images of a static scene have recently matured
to the point where they can be directly used in a variety of applications (e.g.,
photosynth.net). The registration algorithms typically do not attempt to solve
the recognition or the segmentation problems, and are not readily applicable
to registering images of different scenes or objects so that they can be used as
modules in recognition algorithms. Still, the feature extraction stage, e.g. SIFT,
in these technologies has found its way to object recognition research, but not
as a tool for image registration. Under the assumption that registration of im-
ages of similar (but not identical) objects would be hard, the image features are
compared as if they do not have a spatial configuration, i.e., as bags of visual
words (BOW) [1] randomly scattered across the image.

The initial success of BOW models was extended when the researchers at-
tempted to encode at least some spatial information in the models, even if the
required spatial reasoning would be short of full image registration. Such mod-
els are often computationally expensive. For example, [2] forms vocabularies
from pairs of nearby features called “doublets” or “bigamy”. Besides taking co-
occurrences into account this approach benefits from some geometric invariance,
but it is expensive even when feature pairs are considered, and the cost grows
exponentially for higher order statistics. In [4] a codebook of local appearances



2 A.Perina et al.

is learned in way that allows reasoning about which local structures may ap-
pear on objects of a particular class. However, this process has to be supervised
by human-specified object positions and segmentations. Generative part-based
models like [6, 23] are in principle learnable from unsegmented images, but are
computationally expensive as they solve combinatorial search problems. Among
the more computationally efficient approaches, the spatial pyramid method [7]
stands out. The images are recursively subdivided into rectangular blocks, in
a fixed, image-independent way, and the bag-of-words models are applied sep-
arately in these blocks. Image similarity is then defined based on the feature
histogram intersections. This representation is combined with a kernel-based
pyramid matching scheme [8], which efficiently computes approximate global ge-
ometric correspondence between sets of features in two images. Having defined
an image kernel, or a similarity measure for two images, a variety of off-the-shelf
learning algorithms can be used for classification (e.g., the nearest neighbor
method, which simply labels the unlabeled test image with the label of the most
similar labeled image). While the spatial pyramid indirectly registers images for
computation of such a kernel, this registration is limited by the use of a fixed
block-partition scheme for all images.

In this paper, we propose a related approach to defining image similarities,
which can guide object recognition, but also segmentation and registration tasks.
The similarities between two different images are broken down to different re-
gions, but these regions are not rigidly defined by a pyramid kernel, nor do they
require combinatorial matching between images as in [11]. Instead, they are com-
puted using a novel hierarchical model based on the probabilistic index map/stel
models [10, 9, 5, 18], which consider the segmentation task as a joint segmenta-
tion of an image collection, rather than individual images, thus avoiding a costly
combinatorial matching of segments across images. Our new hierarchical stel
model (HSM) also contains multiple levels of segmentation granularity, linked
across the hierarchy, and provides a rich backdrop for image segmentation, reg-
istration and recognition tasks, as any new image can be segmented in various
class-specific ways under under this set of generative models. In particular, we
propose a similarity kernel based on the entire stel hierarchy across all classes
and granularity levels, and we demonstrate that the computation of this kernel
for two test images implicitly matches not only image segments, but even the ob-
ject parts at a much finer granularity than that evident in a segmentation under
any class model. Not only that such use of HSM leads to high recognition rates,
but it also provides surprisingly accurate unsupervised image segmentation, and
unusually informative registration of entirely different images.

2 The basic probabilistic index map/stel model

The basic probabilistic index map, PIM [10], or as it is also called, structure
element (stel) model, assumes that each pixel measurement xi, with its 2-D
coordinate i, has an associated discrete variable si, which takes a label from
the interval [1, S]. Such a labeling splits the image into S stels so that s-th
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Fig. 1. PIM and Hierarchical stel model (HSM) illustration.

stel is a collection of pixel coordinates i, which may be scattered across the
image, or grouped together into coherent blobs, and for which the index si is
set to the desired stel label s, i.e., Ω(s) = {i|si = s}. Fig. 1A shows some
examples of stels: Ω(s = 2) represents the sea, Ω(s = 3) the schooner. The stel
assignments are almost exclusively considered in a probabilistic fashion. In the
simplest case, the distribution over possible assignments of image coordinates to
stels is modeled by a set of location-specific distributions Pi(si) that describe
which image coordinates are more likely to belong to particular stels a priori.
Such a probabilistic index maps ties the stel partitions in different images of the
same type. The posterior stel distribution Q(si) describes how this prior belief
about class-specific image partition gets altered given the pixel measurements
in a particular image (see Fig. 1A). The image evidence that the model detects
is the image self-similarity within a stel: the pixels with the same stel label s
are expected to follow a tight distribution over image measurements, defined by
parameters Λs. Each distribution Λs can be modeled, for example, as a Gaussian
Λs = (µs, σs) (in Fig.1 we only show the means µs) or in other more complex
ways [18, 9]. The collection {Λs} of all stel parameters, organized by the stel
index, is referred to as a palette. The palette for two different images of the
same class can be completely different. Instead of local appearance similarity, the
model insists on consistent segmentation through the stel prior. For example stel
Ω(3) in all images of pedestrians may capture the lower part of the background
and Ω(1) the torso of the pedestrian in the foreground (Fig. 3). Differences in
local appearance of these parts are explained away as differences in the palettes
associated with the images. Moreover, the stel prior is easily learned from a
collection of images starting from a noninformative initialization, which allows
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for efficient segmentation of new images in a fashion consistent with the joint
segmentation of the training images. Another view of this model is that captures
correlated changes of pixels, as in [24], but in a much more computationally
efficient way.

This basic model is easily enriched with transformation variables [18, 9] which
alleviate the requirement for rough pre-alignment of images. However, even the
basic model has a remarkable ability to deal with somewhat misaligned images
without the help of extra variables. For example, Fig. 1C-bottom illustrates the
basic PIM model of the sunflower category, in which the images undergo sig-
nificant transformations (scale, translations, multiple instances). Without help
with accounting for these transformations explicitly, the prior P ({si}) is soft af-
ter learning, but strong enough to tie the segmentations together into consistent
stels. Of course, this robustness to image transformation is limited. In case of
very fine image segmentations with large number of stels, and/or very large im-
age transformations, and/or a sparse training set, the part correspondence may
be highly unreliable. Adding transformation variables could help in such cases,
but in this paper we advocate an even more efficient approach that follows a
traditional computer vision concept: coarse-to-fine hierarchies.

3 Hierarchical stel model (HSM)

Modeling transformation variables is inherently expensive in any model. The
cost of dealing with image translation is of the order N logN , where N is the
number of pixels, but if we also need to take care of scale, rotation, or even
affine transformations, the expense may accumulate quickly. In this paper, our
goal is to extend the natural ability of stel models to capture all but the largest
transformations. If for instance, the model is not sensitive to the transformations
present in the fairly well-aligned Caltech database, then the extra transformation
variables only need to model coarse translation in large images (relative to the
object size), and capture scale at several coarse levels.

To achieve such an increased invariance to image transformation, we consider
stel models at multiple levels of granularity so that the more refined models are
linked to the coarser models. This modification confers two advantages to the
stel models:

– If the alignment at some level of granularity is failing, the coarser levels may
still be useful.

– The higher quality of the alignment of stels at a coarse granularity will guide
the alignment at a finer granularity, making these more useful.

Hierarchical stel model captures a hierarchy of stel partitions at L different gran-
ularity levels indexed by `: Ω`(s) = {i|s`,i = s}. The index label s can be chosen
from sets of different cardinality for stels at different levels of hierarchy. For ex-
ample, in Fig. 1C we show two levels of hierarchical stel model with two stels in
level ` = 1 and five in level ` = 2. The stel partitions are linked hierarchically
by distributions P (s`,i = a|s`+1,i = b) = f `a,b which are not spatially varying.
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In Fig. 1C this linking conditional distributions are defined by a 5 × 2 table of
conditional probabilities f1a,b, but only a few strongest weights are illustrated by
arrows. The image {xi} is linked to each of these stel assignments directly, as if
it was generated L times1 (Fig. 1B).

Given the prior P `+1({si}) for level ` + 1 in the same form as in the basic
site-specific PIM/stel model of the previous section, the prior for the level below
satisfies:

P `
i (s`,i = a) =

∑
b

P `+1
i (s`+1,i = b) · f `a,b. (1)

In this way, each successive level provides a coarser set of stels, created by (prob-
abilistic) grouping of stels from the previous level according to f `a,b; only at the
finest granularity the stel prior is location-specific, as in the previous section,

P ({sL,i}Ni=1) =
∏
i

Pi(sL,i). (2)

As before, the conditional links between the image observation and the stel
assignment at P (xi|s`,i = s) depend only on the s-th palette entry at the hi-
erarchy level `, and not on the pixel coordinate, thus allowing the palette to
affect the appearance of all the stel’s pixels in concert. For added flexibility, the
palette entries capture a mixture of colors. Image colors in the dataset are clus-
tered around 32 color centers, and the real-valued pixel intensities are replaced
by discrete indices to these centers in all our experiments. Each palette entry
Λ`,s is thus a histogram consisting of 32 probabilities {u`,s(k)}, and

P (xi = k|s`,i = s) = u`,s(k). (3)

The joint probability over all variables in the model is

P =
∏
i

P (sL,i)

L−1∏
`=0

f `s`,i,s`+1,i

L∏
`=0

p(xi|s`,i) (4)

where level ` = 0 trivially reduces to a bag of words representation as the stel
variables across the image are constant s0,i = 1. Following the same strategy as

[10] we can easily write the free energy F =
∑
Q log Q

P for this graphical model
assuming a factorized posterior Q =

∏
`,iQ(s`,i), take appropriate derivatives,

and derive the following inference rules for minimizing the free energy for a single
image given the prior over stel hierarchy:

Q(s`,i = s) ∝ P (s`,i = s) · u`,s(xi) u`,s(k) ∝
∑
i

Q(s`,i = s) · [xi = k], (5)

1 The motivation for multiple generation of xi from multiple levels of hierarchy comes
from the observation that modeling multiple paths from hidden variables to the
data, or, for that matter, among hidden variables in the higher levels, alleviates
local minima problems in learning [19].
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where [] is an indicator function. The above updates are image-specific; each
image has in fact its own palette of histograms which allows images with very
different colors to be segmented following the same stel prior (Fig. 1C).

Given a collection of images indexed by t, and the posterior distributions
Q(st`) computed as above, the hierarchical stel distribution is updated as

f `a,b ∝
∑
t,i

Q(st`+1,i = b) ·Q(st`,i = a) P (sL,i = s) ∝
∑
t

Q(stL,i = s). (6)

These updates are iterated and the model is learned in an unsupervised way
form a collection of images. As the result, all images are consistently segmented
into stels at multiple levels of hierarchy. As the palettes are image-specific in
the model, the images can have completely different colors and still be consis-
tently segmented. The hierarchical representation of stels reduces the errors in
segmentation, and provides a rich information about part correspondence for
image comparison, and, therefore, recognition.

4 Hierarchical stel kernel (HSK)

The HSM can be trained for many different image classes indexed by c. A pair
of images (whether they are in one of the training sets for the stel models or
not) can be segmented into stels under any of the resulting models Pc({s`,i})
by iterating the two equations (5). The pair of resulting posterior distributions
Qc(s

A
`,i), Qc(s

B
`,i) for each combination of class c and granularity level ` provides

a coarse correspondence for regions in the two images (Fig. 2).
This rich information can be used in numerous ways, but we limit our analysis

and experiments here to one of the simplest approaches, inspired by the spatial
pyramid match kernel [7], which propose course-to-fine spatial feature matching
schema based on comparing histograms of image features in different parts of
the image and weighting and accumulating evidence of feature sharing. As in
[7], we compute image features in images and represent them using the same
codebook of 300 visual words. But, instead of partitioning each image image
using the same set of rectangular blocks of different sizes, we use the image-
specific segmentations induced by HSM models. Then similarity in image features
in two different images is considered important if these features tend to be within
the same posterior stel under many models.

Specifically, the feature indices k ∈ [1, 300] are assigned to locations on a
grid that covers every fifth pixel along both image dimensions. In a given im-
age, within the s-th stel under the model of class c, at a hierarchy level ` an
unnormalized histogram of image features hc,`,s(k) is computed as

hc,`,s(k) =
∑
i

Qc(s`,i) · ni,k (7)

where ni,k is equal to 1 if a feature of index k is present at location i, 0 otherwise.
Given two images A and B, their histogram similarities within the corresponding
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Fig. 2. Segmentations of two images from the Joshua tree category under various stel
models trained on Caltech 101 images. The prior stel distributions are illustrated on
top. The stels are assigned different colors (blue, light blue, yellow and red), to illustrate
the mode of each posterior stel assignment, which is based both on the prior and on
the image evidence. Although none of the individual segmentations under the leopard,
cougar, butterfly, crab, elephant, and schooner models fits these models very well, the
two images are for the most part consistently segmented under these models: If the
different stel assignments a pixel gets under these different models are considered a
discrete multi-dimensional label, and if these multi-dimensional labels of all pixels are
projected through a random matrix onto 3D colors, so that the similar consistent labels
across models and levels of hierarchy result in a similar color, then the two joshua tree
images end up colored as shown in the rectangular box. This illustrates that the tree
bark has consistent stel assignment in two images more often than not, and similar
correspondence among other parts of the two scenes are visible. In contrast, a single
segmentation, even under the model trained on Joshua tree images (the last column),
does not provide a refined part correspondence.

stels are defined by the histogram intersection kernel [8] defined as

K(A,B) = min
k

(hAc,`,s(k), hBc,`,s(k)), (8)

because this provides computational advantages. To compute a single measure
of similarity for two images under all stels of level `, we sum all the similarities,
weighting more the matches obtained in finer segments:

KHSK
c (A,B) =

L∑
l=0

1

2L−`
·
∑
s

min
k

(hAc,`,s(k), hBc,`,s(k)), (9)

In multi class classification tasks, we define the hierarchical stel kernel (HSK)
as the sum of the kernels for individual classes KHSK =

∑
cK

HSK
c . There are

two reasons for this operation. First, when image similarities are computed for



8 A.Perina et al.

classification tasks, one or both images may not be labeled as belonging to a
particular class, and so considering all classes simultaneously is needed. Second,
even if one of the images belongs to a known class (an exemplar used in classifica-
tion, for instance) and the other’s class is to be predicted, multiple segmentations
of the images under different class models provides useful additional alignment
information (Fig. 2). When insufficient data is used for training stel models (e.g.,
15 training images for Caltech101), the segmentation under any given class may
be noisy, and so pulling multiple segmentations may help. Natural images share
similar structure: Consider for example portraits of dogs and humans, or struc-
ture of different classes of natural scenes, where the background is broken into
horizontal stripes in images of schooners and cars alike. Thus, using many stel
tessellations under many classes reinforces proper alignment of image parts.

Furthermore, as Fig. 5B illustrates, the alignment becomes finer than under
any single model, even than the finest level of stel hierarchy under the model
for the correct class. To illustrate this, we note that because the posterior Q(s)
tends to be peaky, i.e. close to 0 or 1 for most pixels, for any class we have

KHSK
c (A,B) ≈

L∑
l=0

1

2L−`
·
∑
i,j

min
k

(nAk,i, n
B
k,j)×

(∑
s

min
A,B

(Q(sA`,i = s), Q(sB`,j = s)
)

=
∑
i,j

Fi,j ×Mi,j (10)

where Mi,j =
∑L

`=0
1

2L−`

(∑
s minA,B(Q(sA`,i = s), Q(sB`,j = s)

)
represents the

level of expected similarity between the i-th pixel in image A and j-th pixel in
image B based simply on how often the stel labels for these two pixels are shared
across the hierarchy, and Fi,j = mink(nAk,i, n

B
k,j) represents feature similarities

(i.e., matches) between the coordinate i in one image and coordinate j in the
other, independently of any segmentation. Finally we can write

KHSK =
∑
i,j

Fi,j ×
∑
c

M c
i,j . (11)

Here we have that Fi,j > 0 if in locations i and j the same feature index is
present. This feature match is more rewarded through weight

∑
cM

c
i,j if i and

j share the same stels across different models and granularity levels. Figure 5
illustrates these two components, Fi,j and

∑
cM

c
i,j , of the similarity kernel on

the pixel level. First, in Fig. 5A we show how combining three arbitrary classes
creates enough context not only to find the corresponding segment for pixel i in
the first image, but to actually refine this matching across pixels j in the second.
For the selected i, marked by a square,

∑
cM

c
i,j is represented as an image over

coordinates j in the second image. In the second image, as well as in match maps∑
cM

c
i,j , the cross represents the pixel j = i so that the misalignment of the

two faces is evident. While the inference under the face class may be sufficient
to roughly match large regions among the images, the stel segmentations based
on three classes’ segmentations narrow down the correspondence of the marked
pixel (right eye) to the eye regions of the face in the second image and a spurious
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Fig. 3. Pedestrian classification. Left: ROC plots comparing HSM/HSK and other
approaches. Right: the learned HSM parameters

match in the background which happened to have a similar color to the facial
region. For easier visualization we illustrated only three select stels from the
three classes. In Fig. 5B for this example, and several more, we show what
happens when all stels and all classes are used as in the equations above. For
two facial images, the supplemental video shows correspondence of various pixels
in the same manner (The pixel in the first image is marked by a cursor, and the
mapping in the second image is shown as a heat map).

Finally in Fig. 5C, we show jointly the mapping of three pixels i1, i2, i3 in the
first image by placing the appropriate match mapsM in the R, G, and B channels
of the image. As the result, when the entire stel hierarchy under all classes is
used to evaluate

∑
M , the regions around the eyes, and especially around the

right eye in the second image are colored red, while the regions in the lower
part of the face, especially lips, are colored green, and the background elements
are colored blue, indicating that the entire stel model hierarchy can localize the
face parts beyond the granularity of any single model and any single level of
hierarchy. For comparison, M obtained for the face class only and butterfly class
only are shown. To illustrate in the same manner the spatial pyramid kernel [7],
we compute similar decomposition into the expected matching of pixels based
on block image segmentation, and the feature matching of pixels. The complete
kernel under both HSM and the spatial pyramid is the sum over all pixels of the
product Mi,j · Fi,j and so these products are also illustrated in the figure.

Inference and learning complexity in stel models is linear in the number of
image coordinates, stels and classes. The total computation time is consider-
ably faster than SIFT feature computation. Furthermore, the quality of image
matching does not decay much if we use only 30 out of 101 classes.

5 Experiments

We evaluated our approach on Caltech28, Calteh101 and Daimler pedestrian
datasets. We compared with the classification results provided by the datasets’
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creators and with the other feature organization paradigms, namely Bag of words
(BW), Stel organization (SO) and Spatial Pyramids (SPK), as well as other
state-of-the art methods. We considered both classification and unsupervised
segmentation tasks. We used support vector machines as discriminative classi-
fiers, feeding the kernels as input.

5.1 Pedestrian classification: Daimler dataset

We evaluated our method on pedestrian classification using the procedure of [12].
We trained a hierarchical stel model with S1 = 2 and S2 = 4 on the training
set for each class (See Fig. 3 for an illustration). Having trained HSM on the
training data, stel inference can be performed on test images, so that pairwise
similarities (the kernel matrix) can be computed for all pairs of images (training
and test). For the feature code book, we used the dictionary of Haar wavelets
[13]. Given input images of size 18 x 36 and their posterior distributions Q(st1)
and Q(st2), we compute wt

l convolving the image xt with wavelets of scales 4 x
4 (l=1) and 8 x 8 (l=2). We only encoded the magnitude in the feature vectors.
As described above, image features and stel segmentations are used to compute
the kernel matrix and this matrix is fed to a standard SVM classification algo-
rithm. The ROC plots are shown in Fig. 3. As expected, results improve as we
go from L = 0 (AUC, Area under the curve, 0.954) to a multi-level setup (L
> 0). We repeated the classification only keeping into account the foreground
wavelet coefficients. When L=1 the accuracy is significantly improved by con-
sidering only the foreground, but for L=2 it does not, as the hierarchical stel
kernel already reaches impressive performance without emphasizing foreground
in classification. Though matching at the highest pyramid level seems to account
for most of the improvement (AUC 0.9751), using all the levels together confers
a statistically significant benefit (AUC 0.9854). The ROC plot on the right of
figure 3 compares HSK with several recent approaches including [12] which re-
views standard pedestrian classification algorithm and features, [15] which uses
a hybrid generative-discriminative approach based on PIM [10], and [14] which
employs spatial pyramids kernel on a multi-level version of the HOG descriptor
[16].

5.2 Unsupervised segmentation and supervised recognition of
Caltech 28 images

Caltech 28 [17] is composed of 28 classes of objects among the subset of Caltech
101 categories that contain more than 60 images. The chosen categories con-
tain objects with thin regions (e.g. flamingo, lotus), peripheral structures (e.g.
cup), objects that are not centered (e.g. leopards, dalmatians, Joshua trees).
None of the chosen classes contains background artifacts that make them easily
identifiable. For each class, we randomly selected 30 images for training and 30
images for testing. To serve as discrete features to match, we extracted SIFT
features from 15x15 pixel windows computed over a grid with spacing of 5 pixels.
These features were mapped to W=300 codewords as discussed in Section 4. We
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trained a hierarchical model for each class using S1 = 3 and S2 = 5 and then
performed inference on the test images. We calculated the kernel between all
pairs of images as discussed in Section 4 and the used a standard SVM that uses
the class labels and kernels to determine the missing class labels of images in
the test set. We compared the results of several set ups of HSK and with: i) the
bag of words classifier BW, ii) the spatial pyramid kernel (SPK, [7]), and iii) a
classifier based on the single level stel partition (SO, S=5, [9]). All the methods
are compared using the same core-kernel (histogram intersection) and the same
feature dictionary. First, we compared these related methods repeating the clas-
sification 10 times with a randomly chosen training-testing partition. Then we
performed t-tests and found:

BW <<1·10−3

SPK <<3·10−3

HSK >>5·10−4

SO >>4·10−3

BW 2 (12)

Where >>p stands for greater with statistical significance with p-value equal to
p. HSK’s advantage here is due to the segmentations provided by HSM, which
explain away a lot of object transformations (see Fig.1C, bottom) and capture
meaningful object partitions. Mean classification accuracies are summarized in
table 1. As a further test on Caltech 28 we tackled image segmentation, simply

Table 1. Classification accuracies on Caltech 28.

HSK L=1 HSK L=1 HSK L=2 [9] SPK [7] BW [17]
S1 = 3 S1 = 5 S1 = 3, S2 = 5 - L=2 - -

73,15% 74,57% 78,10% 65,12% 65,43% 56,01% 69%

using the posterior stel segmentation induced by the coarsest level of HSM (S1 =
2). Each class of images is fit independently as described in Section 3. After
training, the posterior stel distributions are used as image segmentations. We
compared our results with [17], which provides the manual labeling of pixels.
In figure 4 we compare the segmentation accuracy over different classes. The
overall test accuracy of our unsupervised method is 79,8%, outperforming the
supervised method of [17] with test accuracy of 69%.

5.3 Recognition rates on Caltech 101

Our final set of experiment is on the Caltech 101 dataset. For the sake of com-
parison, our experimental setup is similar to [7]. Namely, we randomly select 30
images from each category: 15 of them are used for training and the rest are
used for testing. We compare our method to only those recognition approaches
that do not combine several other modalities. Results are reported in figure 4
The successfully recognized classes include the ones with rotation artifacts, and
the natural scenes (like joshua tree and okapi), where segmentation is difficult.

2 SO and SPK have been found statistically equal
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Fig. 4. Classification results for the Caltech experiments. On the left we report the
segmentation accuracy for each class of Caltech 28 obtained by [17] (yellow bars) and
by HSM (blue dots with confidence level). On the right, we compare recognition rates on
Caltech 101 images with related spatial-reasoning methods using similar local features.

The least successful classes are animals, similarly to [7]. This is likely not due to
problems of segmentation, but discretized feature representation [20]. Since our
goal is mainly to compare our representation with SPK we report the results we
have obtained using the SPK authors’s implementation of the feature extraction
and quantization. Note that due to a random selection of images, we did not
recreate the exact classification result of SPK, but our HSK similarity measure
outperforms both our implementation of the SPK and the best published SPK
result.

6 Conclusions

We propose a new generative model, and a new image similarity kernel based on a
linked hierarchy of stel segmentation. The goal of our experiments was primarily
to demonstrate the spatial reasoning that can be achieved with our method,
and which goes beyond block comparisons, and even beyond segment matching
and closer to registration of very different images. Therefore we compared our
method using the same discretized features as in the literature describing efficient
spatial reasoning approaches. However, we expect that the better local feature
modeling may improve classification performance, as for example, [20] proposes.
Still, even with current discretized features, the hierarchical stel models can be
used efficiently and with high accuracy in segmentation and classification tasks.
We expect that our image representation will find its applications in multikernel
approaches but may also find other applications due to its ability to combine
image recognition, segmentation, and registration. For example [21, 22] are based
on SPK and could be easily used with our method.
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Fig. 5. Image correspondences implicitly captured by the hierarchical stel kernel. In
A and B, the pairs of images are shown with the pixel of interest in the first image
labeled by a square. In B, for each pair, the stel-based match matrix M, which is only
based on color stel models, is shown as averaged under 1,3,5, and 102 classes randomly
selected from Caltech 101. Below each M matrix we show it multiplied with the target
image. C illustrates the correspondence of multiple points for two image pairs.


